
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017 1477

Dynamic Diagnosis for Defective Reconfigurable
Single-Electron Transistor Arrays

Yun-Jui Li, Ching-Yi Huang, Chia-Cheng Wu, Yung-Chih Chen, Chun-Yao Wang, Member, IEEE,
Suman Datta, Fellow, IEEE, and Vijaykrishnan Narayanan, Fellow, IEEE

Abstract— Single-electron transistor (SET) at room tempera-
ture has been demonstrated as a promising device for extending
Moore’s law due to its ultralow-power consumption. Previous
works proposed mapping approaches to implement Boolean
functions on SET arrays. However, these approaches were based
on an ideal assumption that the SET arrays are defect-free.
Recently, a diagnosis method was proposed targeting at defective
SET arrays. However, the approach was static, such that the
performance is inefficient. As a result, in this paper, we propose
a dynamic diagnosis approach that can efficiently identify the
locations and the types of the defects in the SET arrays. The
experimental results show that the proposed dynamic diagnosis
approach can achieve the same results as the previous work with
much less CPU time on a set of benchmarks. Furthermore, the
proposed method spent a few seconds while the previous work
exceeded the CPU time limit of 3600 s on some benchmarks.

Index Terms— Diagnosis, dynamic, optimization, single-
electron transistor (SET) array.

I. INTRODUCTION

THE increasing power consumption is one of the primary
bottlenecks to extend Moore’s law. Many low-power

devices have been proposed to overcome this issue. Among
these devices, some demonstrations of single-electron tran-
sistors (SETs) operating at room temperature have shown
SET to be a promising candidate to extend Moore’s
law [18]–[20], [23].

Since only a few electrons are involved in the switching
operation for SETs, the low transconductance is a major
issue, such that CMOS-based logic architecture is not suitable
for SETs. Thus, a binary decision diagram (BDD)-based
architecture was proposed in [1] to implement logic functions

Manuscript received May 17, 2016; revised August 22, 2016 and
October 24, 2016; accepted November 27, 2016. Date of publication
January 9, 2017; date of current version March 20, 2017. This work was
supported by the Ministry of Science and Technology of Taiwan under
Grant MOST 103-2221-E-007-125-MY3, Grant MOST 103-2221-E-155-069,
Grant MOST 104-2220-E-155-001, Grant NSC 100-2628-E-007-031-MY3,
Grant NSC 101-2221-E-155-077, Grant NSC 101-2628-E-007-005,
Grant NSC 102-2221-E-007-140-MY3, and Grant NSC 102-2221-E-155-087.

Y.-J. Li, C.-Y. Huang, C.-C. Wu, and C.-Y. Wang are with the Department
of Computer Science, National Tsing Hua University, Hsinchu 30013,
Taiwan (e-mail: abc61219@yahoo.com.tw; s986516@m98.nthu.edu.tw;
orange172839@yahoo.com.tw; wcyao@cs.nthu.edu.tw).

Y.-C. Chen is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (e-mail:
ycchen.cse@saturn.yzu.edu.tw).

S. Datta is with the College of Engineering, University of Notre Dame,
Notre Dame, IN 46556 USA (e-mail: sdatta@nd.edu).

V. Narayanan is with the Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802 USA (e-mail:
vijay@cse.psu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2016.2639533

on SETs. Furthermore, the BDD of a Boolean function can be
used to map onto an SET array [8], [13], [22].

However, if there is any defect occurring on the SET devices
or the nanowire segments in the SET array, the SET array fails
to achieve its function. This causes a low yield of SET arrays
due to the high defect rate of nanodevices and nanowires.
To improve the reliability of SET arrays, reconfigurable SET
architecture was proposed in [7]. This success promotes
the development of automation tools for the synthesis and
verification of SET arrays. Chen et al. [2] proposed the first
automatic synthesis approach in the literature. After that, much
research [3]–[6], [16], [17], [22] focused on minimizing the
area of the mapped SET arrays.

Although the above-mentioned mapping methods for area
minimization were effective, they did not consider the defects,
which could influence the correctness of the implemented
function, within the SET arrays. Thus, a defect-aware mapping
algorithm was proposed in [11], which relied on the defect
information to detour or reuse the defects successfully while
mapping. That work assumed that designers have known the
locations and the types of all defects in the SET arrays before
mapping. Unfortunately, it is not the case for defective SET
arrays in practice. Thus, it is important to have a diagnosis
method to identify the defects within SET arrays for succeed-
ing mapping algorithm.

As a result, the previous work [12] proposed the first
diagnosis algorithm to identify the defects in a reconfigurable
SET array statically. The diagnosis algorithm exploits a diag-
nosis sequence consisting of input patterns and configurations
to achieve this goal. However, the proposed algorithm is
static, since: 1) the diagnosis sequence is fixed regardless the
locations and the types of defects and 2) the diagnosis process
will not be terminated until the whole SET array is traversed
completely. Although this static diagnosis approach is effective
and easy-to-understand, it is inefficient. This is because it spent
a large amount of redundant efforts on the edges that have
been diagnosed. Thus, in this paper, we propose a dynamic
approach that exploits the responses obtained in the diagnosis
process to adjust the succeeding diagnosis sequences.

The main contributions of this paper are twofold.

1) This is the first work using the dynamic approach to
diagnose defective SET arrays.

2) The efficiency of the proposed approach is significantly
elevated as compared with the state of the art.

The rest of this paper is organized as follows. Section II
describes the background of SET arrays. Section III presents
the proposed diagnosis approach for defective SET arrays.

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1478 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

Fig. 1. (a) Structure of a reconfigurable SET device [12]. (b) Formulations
of wrap-around Schottky split gates and the top control gate [7].

Fig. 2. (a) SET array. (b) Example of a ⊕ b. (c) Simplified diamond-shaped
network of a ⊕ b [2].

Section IV shows the experimental results. Section V
concludes this paper.

II. PRELIMINARIES

A. Reconfigurable SET Array

The structure of a reconfigurable SET device is shown in
Fig. 1, where a pair of Schottky gates, called split gates,
are wrapped around the fin that connects the source and the
drain, and the top control gate is built upon the splits gates.
By providing the split gates a voltage bias, the SET can be set
in three modes of operations: 1) active; 2) open; and 3) short
modes. In the active mode, the split gate bias is adjusted to
make the tunneling resistance of the source and drain junctions
to exceed the resistance quantum, but is still low enough to
permit efficient tunneling. Then, the voltage bias applied from
the top control gate (input signal) controls the dot potential
to block or permit electrons tunneling. In the open mode, the
split gate bias is set to a sufficiently negative value to let the
depletion regions from both sides to encroach and pinch off
the nanodot island completely. Finally, in the short mode, a
large enough positive split gate bias is applied, so that the
tunnel junctions become almost transparent and the tunneling
resistance is significantly reduced. In other words, the device
behaves like a near ohmic conductor.

A reconfigurable SET array can be represented as a hexag-
onal network, as shown in Fig. 2(a). There are current sources
and a current detector at the bottom and the top of the
reconfigurable SET array, respectively. The current detector is
considered as the output of the SET array. When the current
comes from a current source and reaches the detector, the
output value is 1; otherwise, the output is 0. Each sloping
edge in the SET array represents an SET device, which can
be configured as active high, active low, short, or open. The
current passes through an active high (or simply high) edge
when the input to the edge is logic 1; the current is blocked

Fig. 3. Fabric representations of the three types of failures [11].

when the input to the edge is logic 0, and vice versa for
active low (low). A short (open) edge represents electrical
short (open). A node device is composed of a pair of sloping
edges, and the node devices on the same row share the same
input. There are connections between the current sources and
the SET array, which can be configured as short or open as
well. The inputs among the rows constitute an input pattern.
When applying an input pattern to an SET array, if there exists
a path that can transport the electrons from the current source
to the detector, the path is a conducting path under this input
pattern.

For example, Fig. 2(b) shows an implementation of a ⊕ b
on an SET array. The output value will be 1 when the input
pattern is either (ab = 01) (via the right path) or (ab = 10)
(via the left path). The other input patterns (ab = 00 or 11)
will lead the output value to be 0. Fig. 2(c) is a simplified
version of Fig. 2(b) by removing the vertical edges of the
hexagons, since they are electrically short. In the rest of this
paper, only the sloping edges will be shown in the SET arrays.

B. Symmetric Fabric Constraint

To reduce the number of input wires that are used to
configure the node devices in the SET array, the sym-
metric fabric constraint [7] is imposed in all the related
works [2]–[6], [11], [16], [17], [22]. The symmetric fabric
constraint limits the configuration of a node device can only
be one of (high, low), (low, high), (short, short), or (open,
open), as shown in Fig. 2(a). Furthermore, the configuration
of (high, low) and (low, high) cannot appear in the same row
of a reconfigurable SET array simultaneously.

To simplify the description about our diagnosis method,
without loss of generality, we only use three types of con-
figurations in this paper, which are (high, low), (short, short),
and (open, open). Therefore, when we set a node to the active
mode, it means that the node is configured as (high, low).

C. Defect Model

A defect model for defective SET arrays was proposed in the
previous work [11], which considers three types of defects, i.e.,
single-stuck-at-open, double-stuck-at-open, and single-stuck-
at-short, as shown in Fig. 3. In this paper, we adopt the same
defect model [11] in our diagnosis approach as the state of the
art [12] did. Furthermore, the single-stuck-at-open defect and
the double-stuck-at-open defect are categorized as open defects
while the single-stuck-at-short defect is categorized as a short
defect. When an edge of a node is defective, its behavior does
not change with a configuration. It means that an open-defect

LI et al.: DYNAMIC DIAGNOSIS FOR DEFECTIVE RECONFIGURABLE SET ARRAYS 1479

edge is always open while a short-defect edge is always short.
Finally, the connections between the SET array and the current
source could also be defective.

III. DIAGNOSIS APPROACH

A. Defect Distribution

The defect rate of the SET devices could be as higher as
2% = 20 000 ppm since it is more vulnerable than MOS [12].
This defect rate means that there are two defects among
100 nodes on average, which is quite sparse. Thus, we also
adopt the assumption of defect distribution proposed in [12] in
this paper. First, open defects and short defects do not occur
in a node device simultaneously. Second, any two defective
nodes, which contain at least one defective edge, are not
adjacent to each other. Therefore, if a node device is identified
as having a defective edge, its six adjacent nodes are assumed
to be defect-free.

B. Overview

The diagnosis for reconfigurable SET arrays is different
from that for traditional Boolean circuits [10], [14], [15], [21]
due to functional reconfigurability of SET arrays. The SET
arrays exploit both SET node configurations and input pat-
terns to represent a circuit’s functionality. Thus, the diagnosis
process can utilize this information to identify the defects. The
node configuration is a setting of node-under-diagnosis, which
is one of (high, low), (short, short), or (open, open). Since
the total amount of node configurations and input patterns,
which is named diagnosis cost, is strongly correlated with the
time spent during diagnosis, our diagnosis approach will also
minimize this cost by determining a good diagnosis sequence.
The problem formulation of this paper is as follows.

Problem formulation: Given a defective reconfigurable SET
array, we would like to identify the locations and the types of
all the defects by determining the node configurations and the
input patterns with the minimized diagnosis cost.

We utilize two ideas to identify the defects.

1) If a configured path is conducting under an input
pattern, the edges in the path do not suffer from any open
defects. Hence, each edge of this path will be marked
as having a nonopen defect.

2) After having a conducting path without open defects,
we can diagnose whether a short defect occurs on an
edge by changing the configuration of the corresponding
node to a new configuration (open, open). If the path
is still conducting after this new configuration, the
corresponding edge will be marked as a short defect.
Otherwise, it is defect-free due to the absence of open
defects and short defects.

The proposed diagnosis approach contains two stages:

1) diagnosis with conducting paths;
2) diagnosis for remaining short defects.

The main concept of our method is to exploit the edges
whose statuses have been identified, i.e., short, open, or defect-
free, to diagnose other adjacent edges dynamically. First,
we try to find a conducting path. If we can find one, we

replace some edges in the path with other adjacent edges-
under-diagnosis. Therefore, when observing a defect effect
at the current detector, we can realize that the defect must
occur among the replaced edges-under-diagnosis. However,
if we cannot find a conducting path, our approach will fail.
We will see the success rate of this operation in the experimen-
tal results. Second, we diagnose short defects and open defects
on the edges of this conducting path and its neighboring
edges. This is because the both ideas mentioned earlier are
based on conducting paths. Finally, we diagnose the remaining
edges, which are left from the previous diagnosis processes,
by creating conducting paths using the identified defective or
defect-free edges.

Before introducing the proposed approach, we use an exam-
ple to illustrate the difference between the static approach
in [12] and the dynamic one in this paper. In Fig. 4, assume
that we only diagnose open defects for the edges in the paths
rooted from the node (0, 0) in a 4 × 8 SET array for brevity.
The height of SET array is 4; hence, the total number of paths
rooted from (0, 0) is 24 = 16. Originally, the diagnosis process
for open defects in [12] will traverse all these paths. However,
only the input patterns from 0001 to 1110 (in binary) are
applied, since the patterns 0000 and 1111 are corresponding
to the undiagnosable edges, which will be explained later.
Fig. 4(a)–(d) shows the first to fourth path and the corre-
sponding input patterns in the SET array. Next, we calculate
the number of configurations from one path to another path.
For example, the first path needs five configurations, including
the connection to the current source, as shown in Fig. 4(a).
It needs two additional configurations to change paths from
Fig. 4(a) and (b), where the nodes at (1, 3) and (3, 3) are
reconfigured. Similarly, it needs two additional configurations
to change from Fig. 4(b) and (c) by reconfiguring the connec-
tions to the current source. In summary, 39 configurations and
14 input patterns are required in the static diagnosis method.

On the contrary, the diagnosis processes for the open defects
in this paper are shown in Fig. 4(a) and (e)–(l). The numbers
of configurations from one figure to the next figure are 2, 3, 3,
2, 2, 3, 2, 2. Therefore, the numbers of required configurations
and input patterns are 24(5+19) and 9,1 respectively. Further-
more, the number of configurations and input patterns required
in the static approach grows exponentially with respect to the

1The first path needs five configurations, including the nodes at (0, 0),
(1, 1), (2, 2), and (3, 3), and the connection to the current source, as shown
in Fig. 4(a). It also needs two additional configurations to change paths from
Fig. 4(a)–(e), where the nodes at (1, 1) and (−1, 1) are reconfigured. It also
needs three additional configurations to change paths from Fig. 4(e) and (f),
where the nodes at (1, 1), (2, 2), and (0, 2) are reconfigured. Then, it needs
another three additional configurations to change paths from Fig. 4(f) and (g),
where the nodes at (2, 2), (3, 3), and (1, 3) are reconfigured. Next, it needs
two additional configurations to change paths from Fig. 4(g) and (h), where
the nodes at (0, 2) and (−2, 2) are reconfigured. After that, it needs two
additional configurations to change paths from Fig. 4(h) and (i), where two
connections to the current source are reconfigured. Similarly, it needs three
additional configurations to change paths from Fig. 4(i) and (j), where the
nodes at (0, 2), (1, 3), and (−1, 3) are reconfigured. Finally, it needs two
additional configurations to change paths from Fig. 4(j) and (k), and two
additional configurations to change paths from Fig. 4(k) and (l). Thus, the
total number of required configurations is 5+2+3+3+2+2+3+2+2 = 24.
Furthermore, each path needs a corresponding input pattern for simulation.
Therefore, the number of required input patterns is 9.

1480 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

Fig. 4. Example of the open-defects diagnosis sequences by the static approach [12] and the proposed dynamic approach. (a)–(d) The first to fourth path
and the corresponding input patterns of static defect diagnosis approach in the SET array. (e)–(l) The paths and the corresponding input patterns of dynamic
defect diagnosis approach in the SET array.

Fig. 5. Example of undiagnosable edges and useless nodes in an SET array.

height of SET array while the dynamic approach does not.
We will elaborate this in the succeeding paragraphs.

Since an SET node is composed of a pair of edges,
the boundary node of an SET array that is with only one
edge is considered as a useless node, and will be discarded.
Furthermore, there are some edges that cannot be involved in
a conducting path due to no nodes below them for building a
complete path. These edges are named undiagnosable edges.
For example, Fig. 5 shows the undiagnosable edges, which
are represented in gray, in an SET array. They are unable to
build a conducting path, since they are connected to useless
nodes, which are represented in black. Since the undiagnosable
edges cannot be further utilized to build paths in the mapping
approaches either, we ignore them and the useless node edges
in the calculation of the diagnosis coverage. Furthermore, these
undiagnosable edges and useless nodes are marked as open
defects after identifying all the edges on the SET array.

The details of the above-mentioned stages will be discussed
in Sections III-C and III-D.

C. Diagnosis With Conducting Paths

Diagnosis with conducting paths is the first stage of the
proposed approach. It contains three steps and each step will
be explained in Sections III-C1–III-C3. The second and third
steps will be executed iteratively until this stage terminates.

1) Finding a Conducting Path: In the beginning, we config-
ure all the nodes in the SET array as (open, open) for reset and
mark all the edges as nonidentified. Then, we use a trial-and-
error method to find a conducting path. Since the defects in an
SET array are sparse under the assumptions of defect rate and
defect distribution, finding a conducting path is quite possible
after a few trials. We will see this result in the experiments.
Thus, we randomly configure a path from the current detector
to the current source and apply the corresponding input pattern
to see whether the output is 1. If the output is 1, the path is
conducting and is selected as the baseline path; otherwise,
we configure other paths. This process is repeated until a
conducting path is found. For example, Fig. 6(a) is a defect
map of an SET array, and the locations and the types of defects
are unknown originally. Fig. 6(b) shows a trial nonconducting
path due to a double-stuck-at-open defect at (−1, 1) with the
corresponding input pattern 1111011. Fig. 6(c) shows a found
conducting path, which serves as the baseline path. In the rest
of this paper, the nodes that do not show their configurations
represent the (open, open) configurations for brevity. After
finding the baseline path, we mark all the edges on this path
as nonopen defects. This baseline path will be referred further
in the next step.

2) Applying Patterns for Short Defects: We apply additional
input patterns to the baseline path again for detecting short
defects on the nonopen edges under the same configuration.
An additional input pattern can be obtained by flipping

LI et al.: DYNAMIC DIAGNOSIS FOR DEFECTIVE RECONFIGURABLE SET ARRAYS 1481

Fig. 6. Example of diagnosis with conducting paths. (a) Defect map of the reconfigurable SET array. (b) Nonconducting path. (c) Conducting path as the
first baseline path. (d) First baseline path and its neighboring edges. (e)–(g) Diagnosing the neighboring edges of the first baseline path. (h) New neighboring
edges and the open-defect candidates. (i) Baseline path involving the expansion node at (−2, 0). (j) Diagnosing the right neighboring edges of the first baseline
path.

the corresponding input bits of the edges-under-diagnosis.
If the output is 0 after applying the additional pattern, the
edges-under-diagnosis are not short. Hence, we can conclude
that these nonopen edges are not short either, i.e., they
are defect-free. On the other hand, if the output is 1 and
only one edge-under-diagnosis is involved, the edge is a short-
defect edge. However, if more than one edge-under-diagnosis
are involved, we cannot determine which edge has a short
defect. Hence, the statuses of these edges will be determined
in the second stage of diagnosis for remaining short defects.
Furthermore, in the whole diagnosis process, if one edge has
been diagnosed already, it will be skipped from the succeeding
process in this dynamic approach.

For example, the original input pattern for the first baseline
path in Fig. 6(c) is 0001111. Since the edges on the baseline
path are nonopen edges, we further identify the short defects
on the path. We flip the first bit of the input pattern, i.e., from
0001111 to 1001111, and the output becomes 0. Thus, we can
realize that the right edge of the node at (0, 0) is not a short
edge. Since this edge has been identified as a nonopen edge
earlier,2 it is a defect-free edge. On the contrary, when we
apply the pattern 0011111 to the baseline path in Fig. 6(c),
the output is still 1, which means that a short defect occurs.
However, we cannot tell whether the right edge of the node
at (2, 2) or the right edge of the node at (1, 3) is a short-
defect edge. We just leave this determination to the stage

2The edge is on the baseline path.

of diagnosis for remaining short defects. Note that we also
exploit the assumption of the defect distribution in this paper
to identify defects, i.e., when we know an edge is a defective
edge, all its six adjacent nodes are defect-free nodes.

3) Diagnosis for the Neighboring Edges: Without loss of
generality, the step of diagnosis for the neighboring edges
starts from the left neighboring edges of the baseline path.
For example, Fig. 6(d) shows the left neighboring edges of
the baseline path, which are represented in dotted lines. In our
approach, the diagnosis order for the neighboring edges starts
from the top level to the bottom one.

To diagnose the neighboring edges, we take the baseline
path as a main trunk and create branches to cover the neighbor-
ing edges. Therefore, we modify the configurations to replace
some edges in the baseline path with the neighboring edges-
under-diagnosis temporarily, and change the input pattern with
respect to the new path. If the output of the new path is 1,
the neighboring edges-under-diagnosis are marked as nonopen.
Conversely, if the output is 0, the newly added neighboring
edges are considered as open-defect candidates. The reason
that they are just the candidates is because the number of
newly added neighboring edges is greater than one.

Note that if the output is 0 after diagnosing a set of
neighboring edges, we have to recover the baseline path.
However, if the output is 1, we set up a new baseline path
by considering the previous neighboring edges as a part of
the new baseline path. Therefore, the baseline path is not
fixed during the diagnosis process for reducing the diagnosis

1482 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

cost. Also, if an open-defect candidate is not adjacent to other
candidates, the open-defect candidate is updated as an open-
defect edge due to uniqueness; otherwise, we determine its
status later.

We take Fig. 6(e)–(g) as examples to show the diagnosis
process for a set of neighboring edges. First, in Fig. 6(e), we
reconfigure the nodes at (−1, 1) and (1, 1) as (high, low)
and (short, short), respectively, to diagnose the left edge of
the node at (0, 0), the right edge of the node at (−1, 1),
and the left edge of the node at (1, 1). We also change
the input pattern from 0001111 to 1001111, as shown in
Fig. 6(e). After applying this input pattern and having the
output value of 0, we mark these three edges-under-diagnosis
as the open-defect candidates. Second, we recover the baseline
path by configuring (open, open) and (high, low) at the nodes
(−1, 1) and (1, 1). Then, in Fig. 6(f), we configure the nodes at
(0, 2) and (2, 2) as (high, low) and (short, short), respectively,
to diagnose the left edge of the node at (1, 1), the right
edge of the node at (0, 2), and the left edge of the node
at (2, 2). The input pattern is modified from 00011113 to
0101111 accordingly, as shown in Fig. 6(f). After applying
this input pattern and having the output value of 1, we mark
these three edges-under-diagnosis as nonopen edges. Note that
the left edge of node at (1, 1) is removed from the open-defect
candidates, since it is identified as a nonopen edge currently.
Next, since the output value in Fig. 6(f) is 1, we reuse the
configurations in Fig. 6(f) when we further diagnose the right
edge of the node at (1, 3), which is the neighboring edge of the
first baseline path. Therefore, we reconfigure both the nodes
at (2, 2) and (3, 3) as (open, open) to change the baseline
path. Then, we reconfigure the node at (1, 3) as (high, low)
and apply the input pattern 0100111. The output value is 1,
as shown in Fig. 6(g), which indicates that the right edge of
node at (1, 3) is a nonopen edge.

To diagnose the defects dynamically for efficiency elevation,
the baseline paths are changed during diagnosis if applica-
ble. A path without open-defects and open-defect candidates
may be a baseline path. For example, Fig. 6(h) shows a
new baseline path, which detours the open-defect candidates
(in gray). The new left neighboring edges are shown as well
in Fig. 6(h). Then, we perform the same process to diagnose
these left neighboring edges until reaching the undiagnosable
edges or the useless nodes.

Note that when creating a new baseline path, we may
configure some nodes in the first row as (short, short) to be
the expansion nodes, as shown in Fig. 6(i). The creation of
this new baseline path in Fig. 6(i) also confirms that the left
edge of the node at (0, 0) is not an open defect. As a result, the
left edge of the node (−1, 1) will be recognized as an open-
defect edge, since it has been diagnosed as an open-defect
candidate in the previous diagnosis process. Thus, we update
the status of this edge by removing it from the open-defect
candidates.

When all the neighboring edges of the original baseline path
are diagnosed, the updated baseline path may be different from
the original one. We can consider this updated baseline path

3This is the input pattern for the baseline path.

as a new baseline path coming from the step of finding a
conducting path. Thus, we apply the second and third steps to
it as well. The diagnosis process continues until reaching the
undiagnosable edges or the useless nodes.

Next, we diagnose the right-hand side edges of the original
baseline path using the same steps as earlier, and the result is
shown in Fig. 6(j). For the nodes in the first row excluding the
one at (0, 0), having a single-stuck-at-open defect is equivalent
to having a double-stuck-at-open defect due to the same defect
effect. The situation is shown in Fig. 6(j). That is, the left
edge of the node at (2, 0) is actually defect-free, but we mark
it as an open-defect candidate, since its defect effect is the
same. Furthermore, if a node in the first row is blocked by
an open defect, it becomes useless, since it cannot be used as
an expansion node anymore. Therefore, we will mark it as a
useless node without diagnosing it, as Fig. 6(j) shows.

Finally, the remaining open-defect candidates are updated
as open defects before closing this stage of diagnosis with
conducting paths.

D. Diagnosis for Remaining Short Defects

As mentioned in Section III-B, short defects are identified
by reconfiguring a node as (open, open) in a conducting path.
If the path is still conducting after the reconfiguration, the
node has a short defect; otherwise, it has no short defect. Since
the locations of open defects have been identified in the last
stage, it is much easier to build a conducting path in this stage.
To diagnose the remaining short defects systematically in this
stage, the conducting baseline paths are built columnwise from
the middle to the left, and then to the right of an SET array.
Of course, the open-defect edges are still detoured while
building the baseline paths.

For example in Fig. 7(a), in the construction of the first
baseline path in C1, the nodes whose x-coordinates are
0 or −1 are involved. However, there is an open-defect edge
in C1; hence, we detour it, such that the first baseline path
is as shown in Fig. 7(a). After configuring the first baseline
path, the diagnosis sequence starts from the top edges to the
bottom ones within the baseline path. Furthermore, if an edge
in the baseline path has been diagnosed as a short defect or
defect-free, we skip it in the diagnosis process.

For diagnosing the remaining short defects, we change
the configurations of the edges-under-diagnosis from the
(high, low) to (open, open), and apply the corresponding input
pattern. If the output is 0, the edge-under-diagnosis is a defect-
free edge due to the absence of open defects and short defects.
On the contrary, if the output is 1, the edge-under-diagnosis
is a short-defect edge.

Before diagnosing the next edge, we have to recover the
baseline path by reconfiguring the node to (high, low). Note
that for the nodes in the first row, only the node at (0, 0)
will be diagnosed for short defects. This is because the other
nodes in the first row are only used for expansions, which
are exactly configured as (short, short). In other words, if
short defects occur in the first row, but are not at the node
of (0, 0), they are harmless. These short defects are consid-
ered as don’t-care defects, and they will be ignored in the
calculation of the coverage.

LI et al.: DYNAMIC DIAGNOSIS FOR DEFECTIVE RECONFIGURABLE SET ARRAYS 1483

Fig. 7. Example of diagnosis for remaining short defects. (a) First baseline path, which detours a double-stuck-at-open defect. (b) and (c) Diagnosing short
defects of the edges in the first baseline path. (d) Second baseline path, which detours a double-stuck-at-open defect. (e) Diagnosing short defects of the right
edge of the node at (−3, 1), which is in the second baseline path. (f) Third baseline path. (g) Identifying the short-defect edge at the left edge of the node
at (−2, 4). (h) Identifying the short-defect edge at the right edge of the node at (2, 2).

For example, Fig. 7(b) and (c) shows the process of diagnos-
ing the first two edges in the first baseline path, respectively.
As shown in Fig. 7(b), we reconfigure the node at (0, 0)
as (open, open) and observe the output value of 0 with the
corresponding input pattern. Thus, the right edge of the node
at (0, 0) is defect-free. Then, we recover the first baseline path
by reconfiguring the node at (0, 0) to (high, low). Next, we
reconfigure the node at (1, 1) to (open, open) and observe the
output value of 0, as shown in Fig. 7(c). Therefore, the left
edge of the node at (1, 1) is defect-free as well.

After dealing with the edges in the first baseline path, we
build the second baseline path in C2. The open defects still
have to be detoured if and only if they block the baseline path.
For example, Fig. 7(d) shows the second baseline path. Note
that the different edges of one node could be used to build
different baseline paths. Hence, such a node does not need
to be reconfigured, whereas the corresponding input pattern
has to be changed. For example, two different baseline paths,
as shown in Fig. 7(d) and (f), reuse the configurations of the
nodes at (−2, 2), (−2, 4), and (−2, 6) and the expansion node
at (−2, 0). Fig. 7(g) shows that the left edge of the node at
(−2, 4) is diagnosed as a short-defect edge, since the output
is 1 under the (open, open) configuration at (−2, 4). Similarly,
the right edge of the node at (2, 2) is diagnosed as a short-
defect edge in C3′, as shown in Fig. 7(h).

When all the columns have been diagnosed, all the short
defects are identified. Finally, we mark the undiagnosable
edges and useless nodes as open defects. Combining with
the identified defects in the first and the second stage, the
diagnosis of the SET array is finished.

E. Overall Flow

Fig. 8 shows the flowchart of the proposed dynamic
diagnosis approach. Given an SET array, we first reset the
configurations of all the nodes as (open, open). Second, we try
to find a conducting path as the baseline path. If the baseline

path is found, we apply the input patterns to diagnose short-
defect and open-defect edges in the baseline path as well as its
left neighboring edges; otherwise, we discard the SET array.
After reaching the undiagnosable edges or the useless nodes,
we apply the same process to the right neighboring edges of
the original baseline path. Then, we diagnose the remaining
short defects. Finally, we mark the undiagnosable edges and
useless nodes as open defects, and report the locations and the
types of the identified defects as a defect map.

F. Time Complexity Analysis

To derive the time complexity of the proposed approach,
we calculate the time complexity of each step, and then sum
them up to obtain the overall result.

First, the time complexity of the first step in the first stage,
which is finding a conducting path, is O(1), since we set the
trial limit as a constant in the algorithm.

Second, we calculate the time complexity of the second
stepapplying patterns for short defects and the third step-
diagnosis for the neighboring edges simultaneously. We put
these two steps together, because they are executed iteratively
until the termination of this stage. Since these two steps
will diagnose several baseline paths individually, we split the
calculation into single baseline path and multiply the result of
a single baseline path by the iteration times. In the second step,
for each baseline path, we need to apply an input pattern for
diagnosing every edge of the baseline path. Thus, the number
of the required input patterns is equal to the height of the
SET array. In the third step, for each edge of each baseline
path, we diagnose the neighboring edges on the same row.
Hence, the number of the required input patterns is equal to
the height of the SET array as well. Then, these results need
to be multiplied by the number of baseline paths in the SET
array. Also, the number of baseline paths is proportional to
the width of the SET array. As the result, the time complexity
of the second and the third steps is O(height × width), where

1484 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

Fig. 8. Flowchart of the proposed dynamic diagnosis approach.

height and width represent the height and the width of an SET
array.

Finally, the time complexity of the second stage, which is
diagnosis for remaining short defects, is O(height × width)
as well. The analysis of this stage is similar to the second and
the third steps in the first stage.

We sum up these three results mentioned earlier to derive
the overall time complexity of the proposed approach

O(1) + O(height × width) + O(height × width)

= O(height × width).

Thus, the time complexity of the proposed diagnosis approach
is O(height × width), which can also be represented as
O(|SET node|).

IV. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C++ language
and conducted the experiments on an Intel Xeon X5570
2.93-GHz CentOS 5.1 platform with 48-GB memory.
We conducted three experiments in this paper with different
sizes of defective SET arrays. The first experiment is to
demonstrate the success rate of finding a conducting path in
a defective SET array. The second experiment is to show the
comparison between the state of the art and our approach on
the efficiency of diagnosis process. The third experiment is to
show the number of undiagnosable edges and useless nodes
in the SET array and the number of defects in them. In the

experiments, the defect rates of the three defect models, single-
stuck-at-open, single-stuck-at-short, and double-stuck-at-open,
are the same and are calculated as the |defective node| / |total
node|×100%. We set the defect rates as 2%, 3%, and 4% for
showing the impact of defect rates on the diagnosis results.
The defects were randomly injected into the SET arrays based
on the defect rates and defect distribution assumed in this
paper. According to the related research [9], the height
constraint of SET arrays limits the number of inputs in an
SET array. In [9], the height constraint was suggested as ten.
Therefore, we conduct the experiments for SET arrays with
different sizes from 10 × 10 to 60 × 60.

In the first experiment, for a single run, we randomly gener-
ated a defect map based on the assumption, and performed the
step of finding a conducting path on it. Then, we calculated
the number of trials required for finding a conducting path.
We conducted 100 runs of experiments and obtained the
average result for each size of SET array.

Table I summarizes the results of the first experiment.
Columns 1 and 2 list the dimension of the defective SET
arrays. Column 3 lists the different defect rates of the SET
arrays. Column 4 lists the number of runs that cannot find a
conducting path within 200 trials. Column 5 lists the average
number of trials for finding a conducting path excluding the
failing runs. Columns 6 and 7 list the average CPU time of
the experiments excluding that in the failing runs and the
total average CPU time. Columns 8–14 are the results as
Columns 1–7.

LI et al.: DYNAMIC DIAGNOSIS FOR DEFECTIVE RECONFIGURABLE SET ARRAYS 1485

TABLE I

EXPERIMENTAL RESULTS OF THE STEP OF FINDING A CONDUCTING PATH

For example, in the SET array of 20 × 50 with the defect
rate of 4%, there were 5 out of 100 runs that cannot find a
conducting path under 200 trials. In the remaining 95 runs, on
average, 4.01 trials were required to find a conducting path and
the average CPU time was 2.97 s. The total average CPU time
was 7.77 s. Furthermore, the total average CPU time among
all sizes of SET arrays was 14.85 s.

According to Table I, the average number of trials of all
the sizes of defective SET arrays for finding a conducting
path is less than 4. Therefore, the step of finding a conducting
path is practical to find a baseline path for the succeeding
diagnosis procedure in the proposed algorithm. However, for
some random defect maps, a conducting path cannot be found
within 200 trials. For these cases, we just discard these SET
arrays. In general, the likelihood of having this situation is
proportional to the magnitude of a defect rate. Furthermore,
when the height of an SET array is greater than or equal
to 40, which represents the number of input variables in a
circuit, the number of failing runs significantly increases. This
is because the probability of a random path that is blocked by
open defects is positively correlated with the height of the SET
array. This probability can be calculated as 1 − (1 − open −

def ect rate)height . However, in the experiments, we still set
200 trials as a threshold to determine if a defective SET array
fails or not even the probability of finding a conducting path
becomes lower. Note that the static approach in [12] did not
suffer from the failing runs, since it always tries all the paths
in the defective SET array.

In the second experiment, we also generated defect maps
for each size of SET array with different defect rates, and
diagnosed them using the algorithms in the state of the art [12]
and this paper. We conducted 20 runs of experiments to obtain
the average result for each size of SET arrays.

Table II summarizes the experimental results of the second
experiment. Columns 1 and 2 list the dimension of the
defective SET arrays. Column 3 lists the defect rate of the
SET arrays. Column 4 lists the coverage of the diagnosed
defects. The coverage is calculated as

coverage = |d.d.|
|t.d.| − |u.e.d.| − |u.n.d.| − |x.d.| × 100%

where |d.d.| denotes the number of diagnosed defects, |t.d.|
denotes the number of total defects, |u.e.d.| denotes the number
of defects in the undiagnosable edges, |u.n.d.| denotes the

1486 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

TABLE II

EXPERIMENTAL RESULTS OF THE PROPOSED DYNAMIC DIAGNOSIS APPROACH AND [12]

number of defects in the useless nodes, and |x.d.| denotes the
number of don’t-care defects. Column 5 lists the false negative,
which is the percentage that defect-free edges were considered
as defective ones, and is calculated as |misjudged edge| / |total

edge| × 100%. Columns 6 and 7 list the average numbers of
node configurations and input patterns that are used in the
proposed diagnosis approach for each SET array. Columns 8
and 9 list the average CPU time of our approach and [12].

LI et al.: DYNAMIC DIAGNOSIS FOR DEFECTIVE RECONFIGURABLE SET ARRAYS 1487

TABLE III

EXPERIMENTAL RESULTS OF NUMBER OF UNDIAGNOSABLE EDGES AND USELESS NODES, AND THE NUMBER OF DEFECTS IN THEM

The last column lists the ratio of CPU time between [12] and
our approach. The last row shows the average number of node
configurations and input patterns, and the average CPU time
for all the SET arrays.

For example, in the SET array of 20 × 50 with the defect
rate of 4% for each defect type, the false negative was 1.56%,
and 3319.9 configurations and 1209.6 patterns were required
on average. The average CPU time of this paper and [12] was
3.11 and 176.31 s, respectively. The ratio of CPU time between
the two approaches was 56.63. The last row shows that the
average CPU time for all the SET arrays in the proposed
approach was 13.35 s.

According to Table II, the proposed diagnosis approach can
achieve 100% coverage, which is the same as [12]. However,
for the SET arrays with height larger than or equal to 25, the
CPU time of [12] exceeded the CPU time limit, 3600 s, of this
paper, while our approach only cost a few seconds. Thus, the
proposed dynamic approach is more efficient and scalable.

For some cases, the percentage of false negative was large.
This is the situation when most of the defects did not occur
in the undiagnosable edges and useless nodes. Under this

situation, most undiagnosable edges and useless nodes are
defect-free, but they are misjudged as open defect in our
approach. Therefore, the percentage of false negative would
be large.

Nevertheless, since these false-negative edges cannot pass
electrons in any situation and have the same defect effect as
open-defect edges, we mark them as having open defects in
our approach. Besides, since the defect-reuse technique in the
defect-aware synthesis algorithm [12] only reuses the edges
with short defects, not reuses the edges with open defects
for path configurations, the false-negative edges will never be
used, such that no erroneous mapping results will occur.

In the third experiment, we also generated defect maps
for each size of SET array with different defect rates.
We conducted four runs of experiments to obtain the number
of undiagnosable edges and useless nodes in the SET array,
and the number of defects in them. Table III summarizes
the experimental results of the third experiment. Column 4
lists the average number of undiagnosable edges and useless
nodes. Column 5 lists the average number of defects in them.
Columns 6–10 are the results as Columns 1–5.

1488 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 4, APRIL 2017

For example, in the SET array of 20 × 50 with the defect
rate of 4%, the average number of undiagnosable edges and
useless nodes is 51.25, and the average number of defects in
them is 14.25. Furthermore, according to Table III, the average
number of undiagnosable edges and useless nodes among all
sizes of SET arrays is 108.77, and the average number of
defects in them among all sizes of SET arrays is 22.78.

V. CONCLUSION

The presence of defects is very common in nanotechnol-
ogy. It is also the case for the SET devices. To elevate
the reliability of SET arrays, we propose the first dynamic
diagnosis approach for defective SET arrays. The major
difference between the previous work and the proposed
dynamic diagnosis approach is that the dynamic approach
adjusts the diagnosis sequence by the feedbacks of the pre-
vious diagnosis process. Thus, the required configurations and
input patterns can be reduced. The experimental result also
shows that the proposed diagnosis approach can achieve 100%
coverage as the state of the art, but with much less CPU
time. With the dynamic diagnosis approach, the synthesis
flow of defective reconfigurable SET arrays will become more
efficient and complete.

REFERENCES

[1] N. Asahi, M. Akazawa, and Y. Amemiya, “Single-electron logic device
based on the binary decision diagram,” IEEE Trans. Electron Devices,
vol. 44, no. 7, pp. 1109–1116, Jul. 1997.

[2] Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and
V. Narayanan, “Automated mapping for reconfigurable single-electron
transistor arrays,” in Proc. Design Autom. Conf., Jun. 2011,
pp. 878–883.

[3] Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and
V. Narayanan, “A synthesis algorithm for reconfigurable single-electron
transistor arrays,” ACM J. Emerg. Technol. Comput. Syst., vol. 9, no. 1,
Feb. 2013, Art. no. 5.

[4] Y.-H. Chen, J.-Y. Chen, and J.-D. Huang, “Area minimization synthe-
sis for reconfigurable single-electron transistor arrays with fabrication
constraints,” in Proc. Design, Autom. Test Eur., Mar. 2014, pp. 1–4.

[5] Y.-H. Chen, Y. Chen, and J.-D. Huang, “ROBDD-based area minimiza-
tion synthesis for reconfigurable single-electron transistor arrays,” in
Proc. Int. Symp. VLSI Design, Autom. Test, Mar. 2015, pp. 1–4.

[6] C.-E. Chiang et al., “On reconfigurable single-electron transistor arrays
synthesis using reordering techniques,” in Proc. Conf. Design, Autom.
Test Eur., Mar. 2013, pp. 1807–1812.

[7] S. Eachempati, V. Saripalli, N. Vijaykrishnan, and S. Datta, “Recon-
figurable BDD-based quantum circuits,” in Proc. Int. Symp. Nanosc.
Archit., Jun. 2008, pp. 61–67.

[8] H. Hasegawa and S. Kasai, “Hexagonal binary decision diagram quan-
tum logic circuits using Schottky in-plane and wrap gate control of GaAs
and InGaAs nanowires,” Phys. E, Low-Dimensional Syst. Nanostruct.,
vol. 11, nos. 2–3, pp. 149–154, Oct. 2001.

[9] C.-H. Ho et al., “Area-aware decomposition for single-electron transistor
arrays,” ACM Trans. Design Autom. Electron. Syst., vol. 21, no. 4,
Sep. 2016, Art. no. 70.

[10] S.-Y. Huang and K.-T. Cheng, “ErrorTracer: A fault simulation based
approach to design error diagnosis,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 18, no. 9, pp. 1341–1352, Sep. 1999.

[11] C.-Y. Huang, C.-W. Liu, C.-Y. Wang, Y.-C. Chen, S. Datta, and
V. Narayanan, “A defect-aware approach for mapping reconfigurable
single-electron transistor arrays,” in Proc. Asia South Pacific Design
Autom. Conf., Jan. 2015, pp. 118–123.

[12] C.-Y. Huang et al., “Diagnosis and synthesis for defective reconfig-
urable single-electron transistor arrays,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 6, pp. 2321–2334, Jun. 2016.

[13] S. Kasai, M. Yumoto, and H. Hasegawa, “Fabrication of GaAs-based
integrated 2-bit half and full adders by novel hexagonal BDD quantum
circuit approach,” in Proc. Int. Symp. Semiconductor Device Res.,
Dec. 2001, pp. 622–625.

[14] W. H. Kautz, “Fault testing and diagnosis in combinational digital
circuits,” IEEE Trans. Comput., vol. C-17, no. 4, pp. 352–366, Apr. 1968.

[15] L. Heh-Tyan, T. Jia-Horng, and L. Chen-Shang, “Efficient automatic
diagnosis of digital circuits,” in Proc. IEEE Int. Conf. Comput.-Aided
Design, Nov. 1990, pp. 464–467.

[16] C.-W. Liu et al., “Width minimization in the single-electron transistor
array synthesis,” in Proc. Design, Autom. Test Eur., Mar. 2014, pp. 1–4.

[17] C.-W. Liu et al., “Synthesis for width minimization in the single-electron
transistor array,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 23, no. 12, pp. 2862–2875, Dec. 2015.

[18] L. Liu, X. Li, V. Narayanan, and S. Datta, “A reconfigurable low-power
BDD logic architecture using ferroelectric single-electron transistors,”
IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 1052–1057, Mar. 2015.

[19] H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker,
“Carbon nanotube single-electron transistors at room temperature,”
Science, vol. 293, no. 5527, pp. 76–79, Jul. 2001.

[20] Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, “Room
temperature nanocrystalline silicon single-electron transistors,” J. Appl.
Phys., vol. 94, no. 1, pp. 633–637, 2003.

[21] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via
test vector simulation,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 18, no. 12, pp. 1803–1816, Dec. 1999.

[22] Z. Zhao, C.-W. Liu, C.-Y. Wang, and W. Qian, “BDD-based synthesis
of reconfigurable single-electron transistor array,” in Proc. Int. Conf.
Comput.-Aided Design, Nov. 2014, pp. 47–54.

[23] L. Zhuang, L. Guo, and S. Y. Chou, “Silicon single-electron quantum-
dot transistor switch operating at room temperature,” Appl. Phys. Lett.,
vol. 72, no. 10, pp. 1205–1207, 1998.

Yun-Jui Li received the B.S. degree from
the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan, in 2014,
where he is currently pursuing the M.S. degree with
the Department of Computer Science.

His current research interests include diagnosis
and logic synthesis for emerging technologies.

Ching-Yi Huang received the B.S. degree from
the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan, in 2009,
where he is currently pursuing the Ph.D. degree with
the Department of Computer Science.

His current research interests include logic
synthesis, optimization, verification for very large-
scale integrated designs, and automation for emerg-
ing technologies.

Chia-Cheng Wu received the B.S. degree from
the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan, in 2015,
where he is currently pursuing the M.S. degree with
the Department of Computer Science.

His current research interests include diagnosis
and logic synthesis for emerging technologies.

LI et al.: DYNAMIC DIAGNOSIS FOR DEFECTIVE RECONFIGURABLE SET ARRAYS 1489

Yung-Chih Chen received the B.S., M.S., and Ph.D.
degrees from the Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan,
in 2003, 2005, and 2011, respectively.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan, Taiwan. His current
research interests include logic synthesis, design
verification, and design automation for emerging
technologies.

Chun-Yao Wang (M’03) received the B.S. degree
from the Department of Electronics Engineering,
National Taipei University of Technology, Taipei,
Taiwan, in 1994, and the Ph.D. degree from the
Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, in 2002.

Since 2003, he has been an Assistant Professor
with the Department of Computer Science, National
Tsing Hua University, Hsinchu, where he is currently
a Professor. He has authored or co-authored over 50
technical papers in his research fields and holds eight

patents. His current research interests include logic synthesis, optimization,
and verification for very large-scale integrated/system-on-chip designs and
emerging technologies.

Dr. Wang research results were nominated as the Best Papers at the 2009
IEEE Asia and South Pacific Design Automation Conference and the 2010
IEEE/ACM Design Automation Conference, respectively.

Suman Datta (F’13) received the B.S. degree in
electrical engineering from IIT Kanpur, Kanpur,
India, in 1995, and the Ph.D. degree in electrical
and computer engineering from the University of
Cincinnati, Cincinnati, OH, USA, in 1999.

He was instrumental in the demonstration of
indium antimonide-based quantum-well transistors
operating at room temperature with a record energy
delay product, the first experimental demonstration
of metal gate plasmon screening and channel strain
engineering in high-/metal gate CMOS transistors,

and the investigation of the transport properties in nonplanar Trigate Tran-
sistors. He is currently a Chang Family Chair Professor with the College
of Engineering, University of Notre Dame, Notre Dame, IN, USA. He
holds over 160 U.S. patents. His current research interests include exploring
new materials and novel device architecture for CMOS enhancement and
replacement for future energy-efficient computing applications.

Dr. Datta was a member with the Logic Technology Development Group,
Intel Corporation, Santa Clara, CA, USA, from 1999 to 2007. He is also a
Distinguished Lecturer of the IEEE Electron Devices Society.

Vijaykrishnan Narayanan (F’11) received the B.S.
degree in computer science and engineering from the
University of Madras, Chennai, India, in 1993, and
the Ph.D. degree in computer science and engineer-
ing from the University of South Florida, Tampa,
FL, USA, in 1998.

He is currently a Professor of Computer Science
and Engineering and Electrical Engineering with
Pennsylvania State University, University Park, PA,
USA. His current research interests include power-
aware and reliable systems, embedded systems,

nanoscale devices and interactions with system architectures, reconfigurable
systems, computer architectures, network-on-chips, and domain specific com-
puting.

Dr. Narayanan was a recipient of several awards, including the Penn State
Engineering Society Outstanding Research Award in 2006, the IEEE CAS
VLSI TRANSACTIONS Best Paper Award in 2002, the Penn State CSE Faculty
Teaching Award in 2002, the ACM SIGDA Outstanding New Faculty Award
in 2000, the Upsilon Pi Epsilon Award for Academic Excellence in 1997, the
IEEE Computer Society Richard E. Merwin Award in 1996, and the University
of Madras First Rank in Computer Science and Engineering in 1993. He
has received several certificates of appreciation for outstanding service from
ACM and the IEEE Computer Society. He is currently an Editor-in- Chief of
the IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

